A new dual-specific incompatibility allele revealed by absence of glycosylation in the conserved C2 site of a Solanum chacoense S-RNase

نویسندگان

  • Jonathan Soulard
  • Xike Qin
  • Nicolas Boivin
  • David Morse
  • Mario Cappadocia
چکیده

The stylar determinant of gametophytic self-incompatibility (GSI) in Solanaceae, Rosaceae, and Plantaginaceae is an S-RNase encoded by a multiallelic S-locus. The primary structure of S-RNases shows five conserved (C) and two hypervariable (HV) regions, the latter forming a domain implicated in S-haplotype-specific recognition of the pollen determinant to SI. All S-RNases are glycosylated at a conserved site in the C2 region, although previous studies have shown that N-linked glycans at this position are not required for S-haplotype-specific recognition and pollen rejection. Here the incompatibility phenotype of three constructs derived from an originally monoglycosylated S11-RNase of Solanum chacoense, that were designed to explore the role of the HV domain in determining pollen recognition and the role of the N-linked glycan in the C2 region, is reported. In one series of experiments, a second glycosylation site was introduced in the HVa region to test for inhibition of pollen-specific recognition. This modification does not impede pollen rejection, although analysis shows incomplete glycosylation at the new site in the HVa region. A second construct, designed to permit complete glycosylation at the HVa site by suppression of the conserved site in the C2 region, did increase the degree of site occupancy, but, again, glycosylation was incomplete. Plants expressing this construct rejected S 11 pollen and, surprisingly, also rejected S 13 pollen, thus displaying an unusual dual specificity phenotype. This construct differs from the first by the absence of the conserved C2 glycosylation site, and thus the dual specificity is observed only in the absence of the C2 glycan. A third construct, completely lacking glycosylation sites, conferred an ability to reject only S 11 pollen, disproving the hypothesis that lack of a conserved glycan would confer a universal pollen rejection phenotype to the plant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glycosylation of S-RNases may influence pollen rejection thresholds in Solanum chacoense.

A survey of Solanum chacoense plants expressing an authentic S(11)-RNase transgene identified a line with partial compatibility to S(11) pollen. By comparing fruit set to the S-RNase levels determined immunologically in single styles, the minimum level of S(11)-RNase required for full rejection of S(11) pollen was estimated to be 18 ng per style. The S(11)-RNase threshold levels are thus consid...

متن کامل

Compatible Pollinations in Solanum chacoense Decrease Both S-RNase and S-RNase mRNA

Gametophytic self-incompatibility (GSI) allows plants to block fertilization by haploid pollen whose S-allele constitution matches one of the two S-alleles in the diploid styles. GSI in Solanum chacoense requires a stylar S-RNase, first secreted from cells of the transmitting tract then imported into incompatible (self) pollen tubes. However, the molecular mechanisms allowing compatible pollen ...

متن کامل

Production of an S RNase with dual specificity suggests a novel hypothesis for the generation of new S alleles.

Gametophytic self-incompatibility in plants involves rejection of pollen when pistil and pollen share the same allele at the S locus. This locus is highly multiallelic, but the mechanism by which new functional S alleles are generated in nature has not been determined and remains one of the most intriguing conceptual barriers to a full understanding of self-incompatibility. The S(11) and S(13) ...

متن کامل

Hypervariable Domains of Self-Incompatibility RNases Mediate Allele-Specific Pollen Recognition.

Self-incompatibility (SI) in angiosperms is a genetic mechanism that promotes outcrossing through rejection of self-pollen. In the Solanaceae, SI is determined by a multiallelic S locus whose only known product is an S RNase. S RNases show a characteristic pattern of five conserved and two hypervariable regions. These are thought to be involved in the catalytic function and in allelic specifici...

متن کامل

Identification of Self- incompatibility Alleles in Some Almond Genotypes by Degenerate S-RNase Primers

The almond, Prunus dulcis Miller which belongs to Rosaceae family, is one of the most important commercial and oldest cultivated tree nut crops. Almonds are classified as a ‘nut’ in which the edible seed is the commercial product. Therefore, pollination and fertilization are necessary in almond. The characteristic of cultivated almond to express gametophytic self- incompatibility discourages se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 64  شماره 

صفحات  -

تاریخ انتشار 2013